Blade : Cube’s OTF2 Trace Visualizer

My first experience with the Vampir trace visualiser was in 2010 during my studies at EPCC. While working on the exercises and samples, I was excited by the possibility of finding out what every process or thread (from thousands) is doing at any point in time. Over the years I have used TAU + Score-P + Vampir toolset with different applications on various systems. When it comes to trace visualisation for scientific applications at scale, Vampir is very impressive. If you haven't used it before, give a try!

One of the missing piece in profiling toolset (in my opinion) is an open source alternative for OTF2 trace visualisation.… Read the rest

Summary Of Python Profiling Tools – Part I

If you are working in the area of scientific computing, in academia or industry, most likely you are using Python in some form. Traditionally Python is described as slow when it comes to performance and there are number of discussions about speed compared to native C/C++ applications 1 2. The goal of this post is not to argue about performance but to summarise various tools that can help to find out performance bottlenecks before coming to such conclusions. In the previous post, I summarised more than 90 profiling tools that can be used for analysing performance of C/C++/Fortran applications.… Read the rest

Python Profiling : Deterministic vs Statistical Profilers

Different python profiling tools use different methodologies for gathering performance data and hence have different runtime overhead. Before choosing a profiler tool it is helpful to understand two commonly employed techniques for collecting performance data :

  • Deterministic profiling Deterministic profilers execute trace functions at various points of interest (e.g. function call, function return) and record precise timings of these events. Typically this requires source code instrumentation but python provides hooks (optional callbacks) which can be used to insert trace functions.
  • Statistical profiling Instead of tracking every event (e.g. call to every function), statistical profilers interrupt application periodically and collect samples of the execution state (call stack snapshots).
Read the rest

Summary of Debugging Tools for Parallel Applications

Nowadays it's not uncommon to run parallel applications with hundreds of thousands of processes on supercomputing platforms. Debugging these parallel applications with sporadic crashes, deadlocks, memory errors or incorrect results is a challenging task. There are number of tools available that help identifying and fixing bugs but one needs to understand tools, their capabilities and when they can be used. This post tries to summarise various debugging tools (open source as well as commercial).

Note that not all tools can be used with distributed applications. For example, open source tools like GDB and Valgrind are commonly used for debugging serial, multi-threaded applications.… Read the rest

Summary of Profiling Tools for Parallel Applications

Many scientific/industrial applications run on workstation to largest supercomputers in the world. With the continuous evolution of hardware platforms, achieving good performance is a challenging task. There are many profiling tools available to analyse and optimise the performance. But not all tools/methods are available on every platform, especially in high performance computing. First step in performance engineering workflow is to understand which tools are available and when they can be used. There is no one-size-fits-all solution : some are designed with broad feature list for high level analysis and others for specific platform with low level hardware metrics.

While choosing profiling tool one need to consider different aspects:

  • Goal : Are you interested in high level performance metrics?
Read the rest